首页 | 本学科首页   官方微博 | 高级检索  
     


Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems
Authors:Yanyan Zhang  Heather K. Hunt  Zhiqiang Hu
Affiliation:1. Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;2. Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
Abstract:Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (±0.1 [standard deviation]) × 107 cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 107 PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (±9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 107 cells per filter) on day 1, 7.5 (±2.8) × 107 and 1.1 (±0.5) × 107 P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 106 PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (±5%) and 56% (±1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial organisms from attached growth systems for effluent quality improvement.
Keywords:Bacteriophage  Anthracite  Granular activated carbon  Biofilter  Nitrifying bacteria
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号