首页 | 本学科首页   官方微博 | 高级检索  
     


An integrated advanced process control framework using run-to-run control,virtual metrology and fault detection
Authors:Shu-Kai S Fan  Yuan-Jung Chang
Affiliation:1. Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan;2. Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan County 243, Taiwan
Abstract:This paper develops a new advanced process control (APC) system for the multiple-input multiple-output (MIMO) semiconductor processes using the partial least squares (PLS) technique to provide the run-to-run control with the virtual metrology data, via the gradual mode or the rapid mode depending on the current system status, in order to deal with metrology delays and compensate for different types of system disturbances. First, we present a controller called the PLS-MIMO double exponentially weighted moving average (PLS-MIMO DEWMA) controller. It employs the PLS method as the model building/estimation technique to help the DEWMA controller generate more consistent and robust control outputs than purely using the conventional DEWMA controller. To cope with metrology delays, the proposed APC system uses the pre-processing metrology data to build up the virtual metrology (VM) system that can provide the estimated process outputs for the PLS-MIMO DEWMA controller. Lastly, the Fault Detection (FD) system is added based upon the principal components of the PLS modeling outcomes, which supplies the process status for the VM mechanism and the PLS-MIMO DEWMA controller as to how the process faults are responded. Two scenarios of the simulation study are conducted to illustrate the APC system proposed in this paper.
Keywords:Advanced process control (APC)  Partial least squares (PLS)  Virtual metrology (VM)  Fault detection (FD)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号