首页 | 本学科首页   官方微博 | 高级检索  
     

形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响
引用本文:陈扬,涂坚,张琰斌,谭力,尹瑞森,周志明.形变和退火对Fe47Mn30Co10Cr10B3间隙高熵合金微观组织结构演变的影响[J].材料研究学报,2021,35(2):143-153.
作者姓名:陈扬  涂坚  张琰斌  谭力  尹瑞森  周志明
作者单位:1.重庆理工大学材料科学与工程学院 重庆 400054;2.重庆市模具技术重点实验室(重庆理工大学) 重庆 400054;3.重庆大学航天航空学院 重庆 400044
摘    要:在不同温度对Fe47Mn30Co10Cr10B3间隙高熵合金进行不同的形变和退火处理,使用电子背散射衍射和电子通道衬度像等手段对样品进行表征,研究了形变和退火对其微观组织结构演变的影响。结果表明,在小应变量条件下,随着形变温度的降低,主导的形变机制从位错滑移转变为相变诱导塑性;在室温形变条件下,随着应变量的增大,主导的形变机制由位错滑移转变为相变诱导塑性。对大应变量的样品退火,随着退火温度的提高,微观组织从形变态(600℃-5 min)、部分再结晶态(800℃-5 min)到完全再结晶态(1000℃-5 min)的演变。在1000℃退火条件下,随着退火时间的延长,微观组织由部分再结晶态(1 min)演变到完全再结晶态(5 min和15 min),且相组成由γ单相演变为γ+ε双相。退火不能改变形变态中第二相颗粒沿着轧向的分布。拉伸实验结果表明合金的屈服强度为326 MPa,抗拉强度为801.9 MPa,延伸率为26.8%,实现了较好的强韧化性能且其断裂机制为韧性断裂。

关 键 词:金属材料  高熵合金  相变诱导塑形  强韧化  
收稿时间:2020-04-21

Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy
CHEN Yang,TU Jian,ZHANG Yanbin,TAN Li,YIN Ruisen,ZHOU Zhiming.Effect of Deformation and Annealing Process on Microstructural Evolution of Fe47Mn30Co10Cr10B3 High Entropy Alloy[J].Chinese Journal of Materials Research,2021,35(2):143-153.
Authors:CHEN Yang  TU Jian  ZHANG Yanbin  TAN Li  YIN Ruisen  ZHOU Zhiming
Abstract:The effect of deformation (deformation degree and deformation temperature) and annealing (annealing temperature and annealing time) on the microstructural evolution of Fe47Mn30Co10Cr10B3 high-entropy alloy were systematically investigated by electron backscattered diffraction and electron channeling contrast. The dominate deformation mechanism changes from dislocation slip to transformation-induced plasticity with the decreasing deformation temperature in case the strain is small. At room temperature, with the increasing strain the dominate deformation mechanism changes from dislocation slip to transformation-induced plasticity while second phase particles precipitate along the rolling direction. During recrystallization annealing treatment of the heavy deformed alloy, with the increasing annealing temperature the alloy presented the following microstructure evolution namely, changed from deformed microstructure (600℃-5 min) to partial recrystallization (800℃-5 min) and then complete recrystallization (1000℃-5 min). For the annealing at temperature (1000℃) with the increasing annealing time the microstructural evolution undergoes partial recrystallization (1 min) and complete recrystallization (5,15 min). In addition, the phase component transforms from single phase (γ) to dual phase (γ + ε). The annealing treatments do not change the distribution of second phase particles along the rolling direction. The high-entropy alloy shows a comprehensive mechanical performance with yield strength of 326 MPa, tensile strength of 801.9 MPa and elongation 26.8%, respectively.
Keywords:metallic materials  high-entropy alloy  transformation-induced plasticity  strength-ductility  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《材料研究学报》浏览原始摘要信息
点击此处可从《材料研究学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号