摘 要: | 基于Zheng等人[1]的研究框架,即将先验金融知识纳入神经网络的设计和训练,提出了一种预测隐含波动率曲面的集成GRU神经网络模型。该模型使用了一种包含波动率微笑的激活函数,并将无套利、左右边界和渐进斜率等金融条件纳入神经网络的训练过程中。利用上证50ETF期权2015年2月9日至2023年3月31日期间的交易数据进行了实证分析。实证结果显示:与SSVI模型和基准神经网络模型相比,集成GRU模型在训练集上的平均绝对百分比误差为8.56,在测试集上的平均绝对百分比误差为11.17,是所有模型中预测精度最高的,同时满足了嵌入的金融条件。
|