首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的时滞神经网络非线性时间序列预测方法
引用本文:向剑伟. 一种新的时滞神经网络非线性时间序列预测方法[J]. 现代电子技术, 2007, 30(4): 118-119,122
作者姓名:向剑伟
作者单位:湖南工业大学,计算机学院,湖南,株洲,412008
摘    要:基于相空间重构的非线性预测思想,建立一个时滞的BP神经网络模型,采用贝叶斯正则化方法提高BP网络的泛化能力,区别于一般的预测方法,非线性预测不仅注重数据拟合和精度改进,而且能够反映被预测系统的非线性特征。将该模型应用于某电子行业进出口贸易非线性时间序列的预测,结果证明改进的模型具有较好的泛化能力,准确拟合了进出口贸易发展的历史值和趋势。并在分析模型预测精度的同时,通过计算拟合序列和原序列的非线性特征量进行模型评价,证实预测模型能够合理地“捕捉”到产生原序列的非线性系统的动力学特征。

关 键 词:非线性时间序列预测  相空间重构  BP网络  贝叶斯正则化
文章编号:1004-373X(2007)04-118-02
收稿时间:2006-06-27
修稿时间:2006-06-27

Research on Interval Prediction of Nonlinear Chaotic Time Series Based on BP Neural Networks Embedded in Bayesian Regularization
XIANG Jianwei. Research on Interval Prediction of Nonlinear Chaotic Time Series Based on BP Neural Networks Embedded in Bayesian Regularization[J]. Modern Electronic Technique, 2007, 30(4): 118-119,122
Authors:XIANG Jianwei
Affiliation:School of Computer, H unan University of Technology, Zhuzhou, 412008, China
Abstract:Based on nonlinear prediction ideas of reconstructing phase space,this paper presents a time delay BP neural network model,whose generalization is improved utilizing Bayesian regularization.Furthermore,the model is applied to forecast the import and export trades in a industry.The results show that the improved TDBPNN model has excellent generalization capabilities,which can not only learn the historical curve,but efficiently predict the trend of trade development.In contrast to conventional evaluation of forecasts,we assess the model by calculating the nonlinear characteristics of the predicted and original time series besides analyzing the precision of forecasting.The estimated values demonstrate that the dynamics of the system producing the original series has been reasonably captured in this model.
Keywords:nonlinear time series prediction  phase space reconstruction  BP neural networks  Bayesian regularization  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号