首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVR的非线性系统故障诊断研究
引用本文:胡良谋,曹克强,王文栋,徐浩军,董新民. 基于SVR的非线性系统故障诊断研究[J]. 机械科学与技术, 2010, 0(2)
作者姓名:胡良谋  曹克强  王文栋  徐浩军  董新民
作者单位:空军工程大学工程学院;94287部队;
基金项目:中国博士后科学基金项目资助
摘    要:针对非线性系统辨识建模和故障诊断难的问题,利用回归型支持向量机(support vector regression,SVR)分别设计了非线性系统的辨识建模系统和故障诊断系统,最后以某一非线性系统为例进行了仿真试验研究,建立了该非线性系统的SVR辨识模型,在此基础上进行了三种典型故障的诊断试验,仿真试验结果验证了该方法的有效性和先进性。

关 键 词:回归型支持向量机(SVR)  非线性系统  系统辨识  故障诊断

Fault Diagnosis of Nonlinear Systems Based on Support Vector Regression
Hu Liangmou,Cao Keqiang,Wang Wendong,Xu Haojun,Dong Xinmin. Fault Diagnosis of Nonlinear Systems Based on Support Vector Regression[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 0(2)
Authors:Hu Liangmou  Cao Keqiang  Wang Wendong  Xu Haojun  Dong Xinmin
Affiliation:Hu Liangmou1,Cao Keqiang1,Wang Wendong2,Xu Haojun1,Dong Xinmin1
Abstract:Aiming at the difficulty of system identification modeling and fault diagnosis for nonlinear systems,a identification modeling system and a fault diagnosis system are designed for nonlinear systems,respectively,by using support vector regression (SVR) . Simulation of one nonlinear system is carried out as an example. The SVR identification model of the nonlinear system is established. Three typical fault simulation tests are carried out based on the SVR identification model. The simulation results show that...
Keywords:support vector regression ( SVR)   nonlinear system  system identification  fault diagnosis
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号