首页 | 本学科首页   官方微博 | 高级检索  
     


A finite element-based model of normal contact between rough surfaces
Authors:Ulf Sellgren,Stefan Bjö  rklundSö  ren Andersson
Affiliation:Machine Elements, Department of Machine Design, Royal Institute of Technology (KTH), Stockholm, Sweden
Abstract:Engineering surfaces can be characterized as more or less randomly rough. Contact between engineering surfaces is thus discontinuous and the real area of contact is a small fraction of the nominal contact area. The stiffness of a rough surface layer thus influences the contact state as well as the behavior of the surrounding system. A contact model that takes the properties of engineering surfaces into account has been developed and implemented using finite element software. The results obtained with the model have been verified by comparison with results from an independent numerical method. The results show that the height distribution of the topography has a significant influence on the contact stiffness but that the curvature of the roughness is of minor importance. The contact model that was developed for determining the apparent contact area and the distribution of the mean contact pressure could thus be based on a limited set of height parameters that describe the surface topography. By operating on the calculated apparent pressure distribution with a transformation function that is based on both height and curvature parameters, the real contact area can be estimated when the apparent contact state is known. The model presented is also valid for cases with local plastic flow in the bulk material.
Keywords:Bearing area curve   Contact area   Contact stiffness   Finite element method   Micro-slip
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号