首页 | 本学科首页   官方微博 | 高级检索  
     


Compiling quantum programs
Authors:Paolo Zuliani
Affiliation:(1) Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
Abstract:In this paper we study a possible compiler for a high-level imperative programming language for quantum computation, the quantum Guarded-Command Language (qGCL). It is important because it liberates us from thinking of quantum algorithms at the data-flow level, in the same way as happened for standard computation a few decades ago.We make use of the normal-form approach to compiler design, introduced by Hoare, Jifeng and Sampaio. In this approach a source program is transformed, by means of algebraic manipulations, into a particular form which can be directly executed by a target machine. This entails the definition of a simple quantum hardware architecture, derived from Hoare et al.’s computing model.Our work provides a general framework for the construction of a compiler for qGCL, focusing mainly on the correctness of the design. Here we do not deal with other topics such as efficiency of compiled code, factorisation of unitary transformations and compilation of quantum data structures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号