首页 | 本学科首页   官方微博 | 高级检索  
     


High-temperature oxidation process analysis of MnCo2O4 coating on Fe-21Cr alloy
Authors:Yuchao FangChaoling Wu  Xiaobo DuanShaorong Wang  Yungui Chen
Affiliation:a Department of Metallic Materials, Sichuan University, Chengdu 610065, PR China
b Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
Abstract:Even though the operation temperature of solid oxide fuel cells (SOFCs) stacks has been reduced (∼750 °C), stainless steel interconnect within the stacks still requires protection by high conductive coatings to delay the growth of oxide scales and reduce chromium evaporation. Manganese cobaltite spinel protective coating with a nominal composition of MnCo2O4 was produced on Fe-21Cr stainless steel. Electrical, microstructural and compositional analysis were performed to investigate the interfacial reaction of MnCo2O4 protective coating with the stainless steel substrate during 750 °C oxidation process. The spinel coating not only acts as a barrier to Cr outward transport, but also improves the electrical conductivity of the alloy interconnect during long-term oxidation. The coated alloy demonstrates good electrical conductivity with an area specific resistance (ASR) of about 5 mOhm cm2 after oxidation for 1000 h at 750 °C, which is about 1/4 of the ASR of bare Fe-21Cr alloy. The reduction of ASR might be caused by the fact that Cr migrated from the steel substrate interact with MnCo2O4 coating and generated Mn-Co-Cr spinel phase, which has higher electrical conductivity than that of Cr2O3.
Keywords:Interconnect  Solid oxide fuel cells  Spinel coating  Interfacial reaction  Oxidation resistance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号