首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法和BP神经网络的短期电力负荷预测
引用本文:李玲纯,田丽. 基于遗传算法和BP神经网络的短期电力负荷预测[J]. 安徽机电学院学报, 2009, 0(3): 57-60
作者姓名:李玲纯  田丽
作者单位:安徽工程科技学院安徽省电气传动与控制重点实验室,安徽芜湖241000
摘    要:根据电力负荷的主要影响因素,考虑时间和天气,建立了基于遗传算法和反向传播神经网络(BP)的短期负荷预测.从BP神经网络的理论入手,采用遗传算法优化BP神经网络的初始权值和隐层节点数,从而避免了神经网络结构确定和初始权值选择的盲目性,提高了神经网络用于电力系统短期负荷预测的效率和精度使得负荷预测在更加合理的网络结构上进行.

关 键 词:遗传算法  BP神经网络  短期负荷  预测

A combined model of genetic algorithm and BP Neural Network for short-term load forecasting
LI Ling-chun,TIAN Li. A combined model of genetic algorithm and BP Neural Network for short-term load forecasting[J]. Journal of Anhui Institute of Mechanical and Electrical Engineering, 2009, 0(3): 57-60
Authors:LI Ling-chun  TIAN Li
Affiliation:(Anhui Provincial Key Lab. of Elec. N- Contr. ,Anhui University of Technology and Science, Wuhu 241000, China)
Abstract:With the main influential factors on electric power load, the weekday and weather considered, a load forecasting model based on genetic algorithm and BP is constructed. Considering that the number of nevre cells in hidder layer,initial weight and unit's bias value are the most important acftors factors to the foercasti percision of ANN,genetic algoritbm is used to choose a more reasonable frame of ANN. Genetic algorithm is good for deci- ding the proper fabric of net, and helping the ANN to conquer its disfigurement.
Keywords:BP  GA  short-term load  forecasting
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号