首页 | 本学科首页   官方微博 | 高级检索  
     

基于不同颜色模型定量预测永川秀芽在制品含水率
引用本文:王杰,张莹,常睿,陈善敏,袁林颖,钟应富,邬秀宏,徐泽. 基于不同颜色模型定量预测永川秀芽在制品含水率[J]. 食品科学, 2022, 43(10): 308-314. DOI: 10.7506/spkx1002-6630-20210615-165
作者姓名:王杰  张莹  常睿  陈善敏  袁林颖  钟应富  邬秀宏  徐泽
作者单位:(重庆市农业科学院茶叶研究所,重庆市茶叶工程技术研究中心,重庆 402160)
基金项目:重庆市技术创新与应用发展专项重点项目(cstc2019jscx-gksbX0092);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0621;cstc2021jcyj-msxmX0997);重庆市农业科学院农业发展资金项目(NKY-2020AB005);重庆市农业科学院绩效激励引导专项(cqaas2021jxjl14)
摘    要:为定量预测永川秀芽在制品的含水率,基于不同颜色模型探究在制品的色泽变化,并结合偏最小二乘(partial least square,PLS)法建立含水率的定量预测模型。结果表明:在永川秀芽初制过程中,在制品的红绿度、蓝色通道均值增高,含水率和亮度、黄蓝度、红色通道均值、绿色通道均值、色调均值等15 个颜色模型分量降低,即色泽表现为变暗、变黄;通过热图与聚类分析,可将在制品分为2 个大类、4 个亚类,且理条工序对在制品含水率、色泽的影响最为显著;利用17 个颜色模型分量和PLS方法建立了含水率的定量预测模型,以校正集相关系数(Rc)、交互验证均方根误差(root-mean-square error of cross-validation,RMSECV)、预测集相关系数(Rp)、预测均方根误差(root-mean-square error of prediction,RMSEP)、相对分析误差(relative percent deviation,RPD)为评价指标。模型的Rc、Rp、RMSECV、RMSEP分别为0.979、0.980、0.044 7、0.044 3。RMSECV、RMSEP的差值仅为0.000 4,且RPD达到5.04,表明模型具有极好的预测能力和泛化能力,为实现永川秀芽在制品含水率的在线监测提供了一种新方法。

关 键 词:永川秀芽;在制品;含水率;颜色模型;偏最小二乘法  

Quantitative Prediction of the Moisture Content in Work-In-Process Yongchuan Xiuya Tea Based on Different Color Models
WANG Jie,ZHANG Ying,CHANG Rui,CHEN Shanmin,YUAN Linying,ZHONG Yingfu,WU Xiuhong,XU Ze. Quantitative Prediction of the Moisture Content in Work-In-Process Yongchuan Xiuya Tea Based on Different Color Models[J]. Food Science, 2022, 43(10): 308-314. DOI: 10.7506/spkx1002-6630-20210615-165
Authors:WANG Jie  ZHANG Ying  CHANG Rui  CHEN Shanmin  YUAN Linying  ZHONG Yingfu  WU Xiuhong  XU Ze
Affiliation:(Tea Research Institute, Chongqing Engineering Technology Research Center for Tea, Chongqing Academy of Agricultural Science, Chongqing 402160, China)
Abstract:A quantitative prediction model for the moisture content of work-in-process Yongchuan Xiuya tea was established using partial least squares regression (PLSR) based on its color changes as evaluated using different color models. The results showed that during the initial production process, the red-green and mean blue channel value increased, while the moisture content and 15 other color model components such as lightness, yellow-blue, mean red channel value, mean green channel value and mean hue value decreased, suggesting that the color became darker and yellower. Through heatmap and cluster analysis, the samples were divided into two categories and four sub-categories, and the carding process had the most significant impact on the moisture and color of the products. Based on the 17 color model components, the predictive model was established, and its performance was evaluated by considering correlation coefficient of calibration set (Rc), root-mean-square error of cross-validation (RMSECV), correlation coefficient of predication set (Rp), root-mean-square error of prediction (RMSEP) and relative percent deviation (RPD). The values of Rc, Rp, RMSECV and RMSEP were 0.979, 0.980, 0.044 7, and 0.044 3, respectively. The difference between RMSECV and RMSEP was merely 0.000 4, and the RPD value was 5.04, indicating that the model had excellent prediction capacity and generalization capacity and could provide a new method for the online monitoring of the moisture content in work-in-process Yongchuan Xiuya tea.
Keywords:Yongchuan Xiuya tea   work-in-process   moisture content   color model   partial least squares,
点击此处可从《食品科学》浏览原始摘要信息
点击此处可从《食品科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号