首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of the Abrasive Size on the Friction Effectiveness and Instability of Brake Friction Materials: A Case Study with Zircon
Authors:M W Shin  Y H Kim  H Jang
Affiliation:1. Department of Materials Science and Engineering, Korea University, 1, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 136-713, South Korea
Abstract:The friction-induced vibration triggered at the sliding interface between the gray iron disk and brake friction material was studied by changing the size of the zircon particles in the friction material. The friction tests were performed using a reduced brake dynamometer and the friction characteristics of the friction materials containing zircon particles with sizes of 3, 50, and 100 μm were analyzed. Our results show that the properties of the sliding surface were strongly affected by the entrenchment of the abrasive particles in the friction layers during sliding. The friction effectiveness was inversely proportional to the size of the abrasive, while friction instability was pronounced when smaller zircon particles were used. The smaller zircon particles produced larger plateaus on the sliding surface with low contact stiffness. However, the contact plateaus with the low contact stiffness showed higher amplitudes of the friction oscillations, suggesting a surface with low stiffness also can produce high propensity of friction instability during sliding. Based on the friction stability diagram and surface properties, such as contact stiffness and surface roughness, it was suggested that the static coefficient of friction, which was changed as a function of dwell time, was crucial to understand the cause of friction-induced force oscillations and propensity of friction instability of brake friction materials.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号