首页 | 本学科首页   官方微博 | 高级检索  
     


Streamer current in a three-electrode system
Authors:Akyuz  M Gao  L Cooray  V Larsson  A
Affiliation:Inst. of High Voltage Res., Uppsala Univ.;
Abstract:A study has been conducted on positive streamer discharges in air at atmospheric conditions for a three-electrode system, The electrode system consisted of two parallel planes (one grounded and one supplied with a negative dc voltage) and a small, insulated needle, sticking out from the center of the grounded plane. A triggering positive square impulse voltage of 5 μs duration was applied to the insulated needle and the currents associated with the streamer discharge were measured simultaneously on all three electrodes. During the streamer propagation, the current measured at the needle was the conduction current while the other two were the displacement (or capacitive) currents generated by the movement of charge in the electrode gap. The objective of this study is to identify the three currents and to investigate if simple representations of the streamer can reproduce the displacement currents measured at the plane electrodes. Two models for the streamer were applied: (1) a charged sphere moving in the background field and (2) a channel with a constant voltage gradient extending in the gap. In both models it was assumed that the streamer propagated with a constant velocity, which was estimated from the measurements. The motion of the streamer was simulated by a series of electrostatic calculations, using a field calculation program. Comparison of the measurements with the simulations indicates that the charge of the streamer is confined to a spherical region (i.e. streamer head) and it is increasing continuously during its advancement in the electrode gap. A discussion on advantages and disadvantages with the two investigated models (sphere vs. channel with potential gradient) is conducted, and a possible hybrid model is suggested. In the proposed model, features from both considered streamer representations are included
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号