首页 | 本学科首页   官方微博 | 高级检索  
     

基于绕封模型的故障特征选择方法研究
引用本文:王新峰,邱静,刘冠军. 基于绕封模型的故障特征选择方法研究[J]. 兵工学报, 2005, 26(5): 685-689
作者姓名:王新峰  邱静  刘冠军
作者单位:国防科技大学,机电工程研究所,湖南,长沙,410073;国防科技大学,机电工程研究所,湖南,长沙,410073;国防科技大学,机电工程研究所,湖南,长沙,410073
基金项目:国防科技跨行业预研基金
摘    要:在机械故障诊断中,基于原始大特征量的故障状态识别会导致识别精度的下降。特征选择可以去除原始特征中的冗余特征,提高诊断精度。但以前广泛应用的基于过滤模型的特征选择方法不能满足进一步提高精度的要求。针对此问题,提出使用基于绕封模型的故障特征选择方法,它采用遗传算法对特征集寻优,样本划分法进行错误率预测估计和BP神经网络学习算法进行分类。轴承诊断实例证昵,此方法有较好的寻优特征子集的能力,可以提高系统的诊断精度。

关 键 词:信息处理技术  特征选择  绕封模型  遗传算法  神经网络
文章编号:1000-1093(2005)05-0685-05
收稿时间:2004-07-02
修稿时间:2004-07-02

Research on Mechanical Fault Feature Selection Based on Wrapper Model
WANG Xin-feng,QIU Jing,LIU Guan-jun. Research on Mechanical Fault Feature Selection Based on Wrapper Model[J]. Acta Armamentarii, 2005, 26(5): 685-689
Authors:WANG Xin-feng  QIU Jing  LIU Guan-jun
Affiliation:Institute of Mechantronics Engineering, National University of Defense Technology, Changsha, Hunan 410073,China
Abstract:Applying lots of primal features to identify fault condition leads to reduce classification correctness. Feature selection can remove redundant features in the primal features to enhance the effect of diagnosis. Filter method which was widely applied before isn't satisfied with the further demand for diagnosis correctness. A feature selection method based on wrapper model was proposed. The approaches to the subject include: genetic algorithm for optimal feature subset selection; k-fold cross-validation method for error rate evaluation and BP neural network for fault classification. As an example, the results of bearing fault diagnosis prove that the method possesses excellent optimization feature subset property, and obtains high correctness rate.
Keywords:information processing technique  feature selection  wrapper model  genetic algorithm (GA)  neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号