首页 | 本学科首页   官方微博 | 高级检索  
     

适合于BP学习的共轭梯度法
作者姓名:田军 虞厥邦
摘    要:基于LMS的标准BP算法收敛速度极慢,而共轭梯度法要求精确的线性搜索,这在神经网络的高维权空间中是难以实现的。本文提出了一种新的BP学习算法,它采用一种对线性搜索要求不高的改进的共轭梯度法与一种简单的不精确线性搜索相结合,极大地提高了BP学习速度。经多次测试表明,与标准BP算法相比,该算法的效率提高了二个数量极。

关 键 词:神经网络 BP学习 共轭梯度法 无约束最优化
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号