首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
适合于BP学习的共轭梯度法
作者姓名:
田军 虞厥邦
摘 要:
基于LMS的标准BP算法收敛速度极慢,而共轭梯度法要求精确的线性搜索,这在神经网络的高维权空间中是难以实现的。本文提出了一种新的BP学习算法,它采用一种对线性搜索要求不高的改进的共轭梯度法与一种简单的不精确线性搜索相结合,极大地提高了BP学习速度。经多次测试表明,与标准BP算法相比,该算法的效率提高了二个数量极。
关 键 词:
神经网络 BP学习 共轭梯度法 无约束最优化
本文献已被
维普
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号