首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory
Authors:Xie  Banghua  Sahmani  Saeid  Safaei  Babak  Xu  Bin
Affiliation:1.School of Civil Engineering & Architecture, Nanchang Institute of Technology, Nanchang, 330099, Jiangxi, China
;2.School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia
;3.School of Mechanical Engineering, Eastern Mediterranean University, G. Magosa, TRNC Mersin 10, Turkey
;
Abstract:

To impart desirable material properties, functionally graded (FG) porous silicon has been produced in which the porosity changes gradually across the material volume. The prime objective of this work is to predict the influence of the surface free energy on the nonlinear secondary resonance of FG porous silicon nanobeams under external hard excitations. On the basis of the closed-cell Gaussian-random field scheme, the mechanical properties of the FG porous material are achieved corresponding to the uniform and three different FG patterns of porosity dispersion. The Gurtin–Murdoch theory of elasticity is implemented into the classical beam theory to construct a surface elastic beam model. Thereafter, with the aid of the method of multiple time-scales together with the Galerkin technique, the size-dependent nonlinear differential equations of motion are solved corresponding to various immovable boundary conditions and porosity dispersion patterns. The frequency response and amplitude response associated with the both subharmonic and superharmonic hard excitations are obtained including multiple vibration modes and interactions between them. It is found that for the subharmonic excitation, the nanobeam is excited within a specific range of the excitation amplitude, and this range shifts to higher excitation amplitude by incorporating the surface free energy effects. For the superharmonic excitation, by taking surface stress effect into account, the excitation amplitude associated with the peak of the vibration amplitude enhances. Moreover, in the subharmonic case, it is demonstrated that by increasing the porosity coefficient, the value of the excitation frequency at the joint point of the two branches of the frequency-response curve reduces. In the superharmonic case, it is revealed that an increment in the value of porosity coefficient leads to decrease the peak of the oscillation amplitude and the associated excitation frequency.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号