首页 | 本学科首页   官方微博 | 高级检索  
     


Mathematical modelling and a meta-heuristic for flexible job shop scheduling
Authors:V. Roshanaei  Ahmed Azab  H. ElMaraghy
Affiliation:Intelligent Manufacturing System (IMS) Centre, University of Windsor, Windsor, Canada.
Abstract:This study develops new solution methodologies for the flexible job shop scheduling problem (F-JSSP). As a first step towards dealing with this complex problem, mathematical modellings have been used; two novel effective position- and sequence-based mixed integer linear programming (MILP) models have been developed to fully characterise operations of the shop floor. The developed MILP models are capable of solving both partially and totally F-JSSPs. Size complexities, solution effectiveness and computational efficiencies of the developed MILPs are numerically explored and comprehensively compared vis-à-vis the makespan optimisation criterion. The acquired results demonstrate that the proposed MILPs, by virtue of its structural efficiencies, outperform the state-of-the-art MILPs in literature. The F-JSSP is strongly NP-hard; hence, it renders even the developed enhanced MILPs inefficient in generating schedules with the desired quality for industrial scale problems. Thus, a meta-heuristic that is a hybrid of Artificial Immune and Simulated Annealing (AISA) Algorithms has been proposed and developed for larger instances of the F-JSSP. Optimality gap is measured through comparison of AISA’s suboptimal solutions with its MILP exact optimal counterparts obtained for small- to medium-size benchmarks of F-JSSP. The AISA’s results were examined further by comparing them with seven of the best-performing meta-heuristics applied to the same benchmark. The performed comparative analysis demonstrated the superiority of the developed AISA algorithm. An industrial problem in a mould- and die-making shop was used for verification.
Keywords:scheduling  flexible job shop  mixed integer linear programming  hybrid artificial immune algorithms  simulated annealing  size complexity  optimality gap
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号