首页 | 本学科首页   官方微博 | 高级检索  
     

因果信息在不同粒度上的迁移性
引用本文:姚宁,苗夺谦,张志飞. 因果信息在不同粒度上的迁移性[J]. 计算机科学, 2019, 46(2): 178-186
作者姓名:姚宁  苗夺谦  张志飞
作者单位:同济大学计算机科学与技术系 上海201804;同济大学嵌入式系统和服务计算教育部重点实验室 上海201804;同济大学计算机科学与技术系 上海201804;南京大学计算机软件新技术国家重点实验室 南京210023
基金项目:本文受国家重点研发计划(213),国家自然科学基金项目(61673301,61573255,61573259,61673299),公安部重大专项(20170004),南京大学计算机软件新技术国家重点实验室开放课题基金项目(KFKT2017B22)资助
摘    要:知识与粒度相关,在不同粒度上对现象的解释不同,而因果性描述的是现象的本质特征。因果性与粒度之间存在着怎样的关联,一个粒度上的因果关系是否可移植到其他不同粒度上,是目前人工智能研究亟待解决的问题。针对由观测数据构成的信息系统,从数据中直接抽取因果变量所需满足的基本图形结构,估算变量间的因果关系;再通过向系统中添加新属性以及合并多个信息系统,改变原系统中信息的粒度,研究所识别的因果关系在新系统中的可迁移性。若新属性作用于结果变量,则原系统中的因果关系不可迁移至新系统;若新属性对结果变量无影响,则原系统中的因果关系可移植至新系统。

关 键 词:因果关系  可迁移性  粗糙集  粒度  干预  因果图
收稿时间:2018-02-20
修稿时间:2018-04-08

Transportability of Causal Information Across Different Granularities
YAO Ning,MIAO Duo-qian and ZHANG Zhi-fei. Transportability of Causal Information Across Different Granularities[J]. Computer Science, 2019, 46(2): 178-186
Authors:YAO Ning  MIAO Duo-qian  ZHANG Zhi-fei
Affiliation:Department of Computer Science and Technology,Tongji University,Shanghai 201804,China;Key Laboratory of Embedded System & Service Computing,Ministry of Education of China,Tongji University,Shanghai 201804,China,Department of Computer Science and Technology,Tongji University,Shanghai 201804,China;Key Laboratory of Embedded System & Service Computing,Ministry of Education of China,Tongji University,Shanghai 201804,China and Department of Computer Science and Technology,Tongji University,Shanghai 201804,China;State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210023,China
Abstract:The knowledge we learned is grain-dependent,which leads to different explanations for a phenomena at different granularities.Causality characterizes the essence of the phenomena.These factors raise an urgent problem currently to be solved in artificial intelligence:the relationship between causality and granularity as well as the transportability of causal effect at one granularity over to a different granularity.Aiming at the information system gathered from observational data,the basic graphical structures required for causal variables can be extracted directly from the data.According to these structures,the causal effects between variables can be computed.By adding new attributes to system and merging multiple information systems,the granularity in the original system is changed and then the issue of whe-ther the causal effect can be transported to the new system is settled in detail.The causal relationship from the original system cannot be transported to the new system if the new attribute acts on the effect variable,otherwise the transporta-bility is feasible in the new system.
Keywords:Causal relationship  Transportability  Rough set  Granularity  Interventions  Causal diagram
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号