首页 | 本学科首页   官方微博 | 高级检索  
     

基于多视图集成的网络表示学习算法
引用本文:冶忠林,赵海兴,张科,朱宇. 基于多视图集成的网络表示学习算法[J]. 计算机科学, 2019, 46(1): 117-125
作者姓名:冶忠林  赵海兴  张科  朱宇
作者单位:陕西师范大学计算机科学学院 西安710062;陕西师范大学计算机科学学院 西安710062;青海师范大学计算机学院 西宁810008;青海师范大学计算机学院 西宁810008
基金项目:本文受国家自然科学基金支持项目(61663041,1),长江学者和创新研究团队项目(IRT_15R40),中国教育部春辉计划研究基金项目(Z2014022),青海省自然科学基金项目(2013-Z-Y17,4-ZJ-721),中央高校基本科研业务费专项资金(2017TS045)资助
摘    要:现有的网络表示学习算法主要为基于浅层神经网络的网络表示学习和基于神经矩阵分解的网络表示学习。基于浅层神经网络的网络表示学习又被证实是分解网络结构的特征矩阵。另外,现有的大多数网络表示学习仅仅从网络的结构学习特征,即单视图的表示学习;然而,网络本身蕴含有多种视图。因此,文中提出了一种基于多视图集成的网络表示学习算法(MVENR)。该算法摈弃了神经网络的训练过程,将矩阵的信息融合和分解思想融入到网络表示学习中。另外,将网络的结构视图、连边权重视图和节点属性视图进行了有效的融合,弥补了现有网络表示学习中忽略了网络连边权重的不足,解决了基于单一视图训练时网络特征稀疏的问题。实验结果表明,所提MVENR算法的性能优于网络表示学习中部分常用的联合学习算法和基于结构的网络表示学习算法,是一种简单且高效的网络表示学习算法。

关 键 词:网络表示学习  网络嵌入学习  复杂网络编码学习  网络可视化  表示学习
收稿时间:2018-05-05
修稿时间:2018-07-16

Network Representation Learning Based on Multi-view Ensemble Algorithm
YE Zhong-lin,ZHAO Hai-xing,ZHANG Ke and ZHU Yu. Network Representation Learning Based on Multi-view Ensemble Algorithm[J]. Computer Science, 2019, 46(1): 117-125
Authors:YE Zhong-lin  ZHAO Hai-xing  ZHANG Ke  ZHU Yu
Abstract:The existing network representation learning algorithms mainly consist of the methods based on the shallow neural network and the approaches based on neural matrix factorization.It has been proved that network representation learning based on shallow neural network is to factorize feature matrix of network structure.In addition,most of the existing network representation algorithms learn the features from the structure information,which is a single view representation learning for networks.However,there are various kinds of views in the network.Therefore,this paper proposed a network representation learning approach based on multi-view ensemble (MVENR).The algorithm abandons the neural network training process and integrates the idea of matrix information ensemble and factorization into the network representation vectors.MVENR gives effective combination strategy between the network structure view.The link weight view and the node attribute view.Meanwhile,it makes up the shortage of neglecting the network link weight,and solves the sparse network feature problem for using single view training.The experimental results show that the proposed algorithm outperforms the commonly joint learning algorithms and the methods purely based on network structure features,and it is a simple and efficient network representation learning algorithm.
Keywords:Network representation learning  Network embedding learning  Complex network encoding learning  Network visualization  Representation learning
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号