首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of biodegradable poly(trans-4-hydroxy-N-benzyloxycarbonyl-l-proline)-block-poly(ε-caprolactone) copolymers and micellar characterizations
Authors:Ren-Shen Lee  Hua-Rong Li  Fu-Yuan Tsai
Affiliation:a Center of General Education, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan, ROC
b Department of Chemical Engineering and Material, Chang Gung University, Taoyuan, Taiwan, ROC
Abstract:A series of novel types of diblock poly(trans-4-hydroxy-N-benzyloxycarbonyl-l-proline)-block-poly(ε-caprolactone) (PHpr10-b-PCL) copolymers were synthesized by ring-opening polymerization from macroinitiator poly(trans-4-hydroxy-N-benzyloxycarbonyl-l-proline) (PHpr10) and ε-caprolactone (ε-CL) in the presence of organocatalyst dl-lactic acid (dl-LA). The Mn of the copolymers increased from 3370 to 19,040 g mol−1 with the molar ratio (10-100) of ε-CL to PHpr10. These products were characterized by differential scanning calorimetry (DSC), 1H NMR, and gel permeation chromatography. According to DSC, the glass-transition temperature (Tg) of the diblock copolymers depend on the molar ratio of monomer/initiator that were added. The hydrolytic degradation behavior of PHpr-b-PCLs was evaluated from weight-loss measurements and the change of Mn and Mw/Mn. With higher PCL contents resulted in a slower weight loss, while having a higher molecular weight loss percentage. Their micellar characteristics in an aqueous phase were investigated by fluorescence spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). The block copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 1.33-4.22 mg L−1. The micelles exhibited a spindly shape and showed a narrow monodisperse size distribution. The obtained micelles have a relatively high drug-loading of about 26% when the feed weight ratio of amitriptyline hydrochloride (AM) to polymer was 1/1. An increase of molecular weight and hydrophobic components in copolymers produced a higher CMC value and greater loading efficiencies were observed.
Keywords:Biodegradable  PHpr/PCL block copolymer  Critical micelle concentration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号