首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小线性均方估计的小波去噪算法
引用本文:朱文涛,付炜. 基于最小线性均方估计的小波去噪算法[J]. 现代电子技术, 2010, 33(12): 121-124
作者姓名:朱文涛  付炜
作者单位:燕山大学信息科学与工程学院,河北秦皇岛,066004
基金项目:河北省教育厅自然科学基金项目 
摘    要:提出一种新的基于最小线性估计正交小波图像去噪算法。该算法把降噪过程直接看作是一个小波系数的加权和,而不是为小波系数假设一个统计模型。在此,基于最小线性均方估计构造去噪函数,然后最小化均方误差,得到一组估计参数,从而得到线性去噪函数,实现对非线性去噪算法的改进,其最大的好处就是不用先验知识;最后通过使用该去噪算法对一定噪声级数的标准图像进行处理,并与目前去噪效果最好的BLS-GSM方法进行了比较。结果表明了该方法的有效性。

关 键 词:均方误差  小波系数  去噪  线性估计

Wavelet De-noising Algorithm Based on LMS Estimation
ZHU Wen-tao,FU Wei. Wavelet De-noising Algorithm Based on LMS Estimation[J]. Modern Electronic Technique, 2010, 33(12): 121-124
Authors:ZHU Wen-tao  FU Wei
Affiliation:(College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China)
Abstract:A new orthogonal wavelet image de noising algorithm based on the least linear estimation is proposed. Instead of postulating a statistical model for the wavelet coefficients, the de-noising process was regarded as a sum of wavelet coefficients with unknown weights. Constructing de-noising function based on the least linear mean square estimation, then minimizing the mean square error, a group of estimation parameters can be acquired to construct the linear de-nosing function completing the improvement of no-linear de-nosing function. The most important advantage is that the priori knowledge is needless. Comparing with the result acquired by BLS-GSM over a suitable range of noise levels for a standard image, the result acquired by using this proposed approach.
Keywords:mean squares error  wavelet coefficients  de-noising  linear mean square estimation
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号