首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical and electrical properties of carbon nanotube buckypaper reinforced silicon carbide nanocomposites
Affiliation:1. College of Materials & Mineral Resources, Xi׳an University of Architecture and Technology, 13#, Yanta Road, Xi’an, Shaanxi 710055, PR China;2. Composite Materials and Structures Laboratory, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA;3. National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, 127#, Youyi Road, Xi’an, Shaanxi 710072, PR China;1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China;2. Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China;3. Department of Materials Science, Glass and Ceramics, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen, Germany;1. Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Fachgebiet Disperse Feststoffe, Jovanka-Bontschits-Straße 2, 64287 Darmstadt, Germany;2. Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan;1. Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States;2. Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, United States;1. Technische Universität Darmstadt, Institut für Materialwissenschaft, Fachgebiet Disperse Feststoffe, Jovanka-Bontschits-Strasse 2, D-64287 Darmstadt, Germany;2. Technische Universität Darmstadt, Institut für Materialwissenschaft, Fachgebiet Oberflächenforschung, Jovanka-Bontschits-Strasse 2, D-64287 Darmstadt, Germany;3. Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Geomaterialwissenschaft, Schnittspahnstrasse 9, D-64287 Darmstadt, Germany;1. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China;2. Sustainable Energy Technologies Center, King Saud University, Riyadh, 11421, Saudi Arabia
Abstract:The nanocomposite was produced via phenolic resin infiltrating into a carbon nanotube (CNT) buckypaper preform containing B4C fillers and amorphous Si particles followed by an in-situ reaction between resin-derived carbon and Si to form SiC matrix. The buckypaper preform combined with the in-situ reaction avoided the phase segregation and increased significantly the volume fraction of CNTs. The nanocomposites prepared by this new process were dense with the open porosities less than 6%. A suitable CNT–SiC bonding was achieved by creating a B4C modified interphase layer between CNTs and SiC. The hardness increased from 2.83 to 8.58 GPa, and the indentation fracture toughness was estimated to increase from 2.80 to 9.96 MPa m1/2, respectively, by the reinforcing effect of B4C. These nanocomposites became much more electrically conductive with high loading level of CNTs. The in-plane electrical resistivity decreased from 124 to 74.4 μΩ m by introducing B4C fillers.
Keywords:B  Nanocomposites  B  Interfaces  C  Electrical conductivity  C  Hardness  C  Toughness and toughening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号