首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of reduced graphene oxide/tungsten trioxide nanocomposite electrode for high electrochemical performance
Affiliation:2. Univ. Ibn Zohr, Equipe de Catalyse et Environnement, Faculté de Sciences, BP 8106 Cité Dakhla, Agadir, Morocco
Abstract:A facile and well-controllable reduced graphene oxide/tungsten trioxide (rGO/WO3) nanocomposite electrode was successfully synthesized via an electrostatic assembly route at 350 rpm for 24 h. In this study, hexagonal-phase WO3 (h-WO3) nanofiber was well distributed on rGO sheets by applying optimal processing parameters. The as-synthesized rGO/WO3 nanocomposite electrode was compared with pure h-WO3 electrode. A maximum specific capacitance of 85.7 F g?1 at a current density of 0.7 A g?1 was obtained for the rGO/WO3 nanocomposite electrode, which showed better electrochemical performance than the WO3 electrode. The incorporation of WO3 into rGO could prevent the restacking of rGO and provide favourable surface adsorption sites for intercalation/de-intercalation reactions. The impedance studies demonstrated that the rGO/WO3 nanocomposite electrode exhibited lower resistance because of the superior conductivity of rGO that improved ion diffusion into the electrode. To evaluate the contribution of WO3 to the rGO/WO3 nanocomposite, the influence of mass loading of WO3 on the capacitance was investigated.
Keywords:Reduced graphene Oxide  Tungsten trioxide  Supercapacitor  Electrochemical performance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号