首页 | 本学科首页   官方微博 | 高级检索  
     


Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering
Authors:F Z Cui  W M Tian  S P Hou  Q Y Xu  I-S Lee
Affiliation:(1) Biomaterials Laboratory, Department of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China;(2) Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054, China;(3) Institute of Physics & Applied Physics, and Yonsei Center for Nano Technology Yonsei University, Seoul, 120-749, Korea
Abstract:In this paper, hyaluronic acid hydrogels with open porous structure have been developed for scaffold of brain tissue engineering. A short peptide sequence of arginine–glycine–aspartic acid (RGD) was immobilized on the backbone of the hydrogels. Both unmodified hydrogels and those modified with RGD were implanted into the defects of cortex in rats and evaluated for their ability to improve tissue reconstruction. After 6 and 12 weeks, sections of brains were processed for DAB and Glees staining. They were also labeled with GFAP and ED1 antibodies, and observed under the SEM for ultrastructral examination. After implanting into the lesion of cortex, the porous hydrogels functioned as a scaffold to support cells infiltration and angiogenesis, simultaneously inhibitting the formation of glial scar. In addition, HA hydrogels modified with RGD were able to promote neurites extension. Our experiments showed that the hyaluronic acid-RGD hydrogel provided a structural, three-dimensional continuity across the defect and favoured reorganization of local wound-repair cells, angiogenesis and axonal growth into the hydrogel scaffold, while there was little evidence of axons regeneration in unmodified hydrogel.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号