基于全局K-means聚类算法的汽车行驶工况构建 |
| |
作者姓名: | 高建平 任德轩 郗建国 |
| |
作者单位: | 河南科技大学车辆与交通工程学院,河南洛阳,471003 |
| |
基金项目: | 国家自然科学基金;河南科技大学研究生创新项目 |
| |
摘 要: | 为构建符合郑州市交通特征的乘用车典型行驶工况,选取60辆乘用车进行数据采集,将采集的有效行驶数据划分成120 744条运动学片段,采用主成分分析法对构建的特征参数矩阵进行降维、非线性化处理。选取戴维森-堡丁指数来确定最佳聚类数,并通过全局K-means聚类算法将主成分分析得到的4个主成分聚成3类,然后采用相关系数法从各类片段库中选取具有代表性的运动学片段,从而构建出郑州市乘用车典型循环工况(ZZ_DC)。通过与传统K-means聚类算法构建的工况比较,采用全局K-means聚类构建的工况更加准确地反映了郑州市乘用车在实际道路上的行驶状态。将ZZ_DC工况与国内一直采用的乘用车测试工况(NEDC工况)比较,结果表明,ZZ_DC工况与NEDC工况差异显著,因此,有必要开发出适用于郑州市交通特征的乘用车行驶工况。
|
关 键 词: | 乘用车 行驶工况 主成分分析法 全局K-means聚类 |
本文献已被 CNKI 万方数据 等数据库收录! |
|