首页 | 本学科首页   官方微博 | 高级检索  
     

基于充电设备利用率的电动汽车充电路径多目标优化调度
引用本文:周天沛,孙伟. 基于充电设备利用率的电动汽车充电路径多目标优化调度[J]. 电力系统保护与控制, 2019, 47(4): 115-123
作者姓名:周天沛  孙伟
作者单位:徐州工业职业技术学院机电学院,江苏徐州221140;中国矿业大学信控学院,江苏徐州221008;中国矿业大学信控学院,江苏徐州,221008
基金项目:江苏省产学研合作计划项目资助(BY2016026-01);江苏省高校自然科学研究面上项目资助(16KJB480006)
摘    要:由于电动汽车车主选择充电站具有较大的随机性,使得各充电站的利用率存在较大的差异,从而造成整个电网的负荷失衡,影响配电网的稳定性和安全性。针对上述问题,将行驶路程最近、时间最短、充电站时间利用率偏差最小和功率利用率偏差最小作为优化目标,建立了电动汽车充电路径多目标优化调度模型。在对该模型进行求解的过程中,提出了基于细菌趋化的改进粒子群算法进行求解。仿真结果表明,采用该算法后,电动汽车车主可以根据区域内充电站的利用率情况有目的选择充电站,实现均衡化充电站利用率的目的。

关 键 词:电动汽车  充电路径  多目标优化  充电设备利用率  细菌趋化PSO算法
收稿时间:2018-03-15
修稿时间:2018-04-23

Multi-objective optimal scheduling of electric vehicles for charging route based on utilization rate of charging device
ZHOU Tianpei and SUN Wei. Multi-objective optimal scheduling of electric vehicles for charging route based on utilization rate of charging device[J]. Power System Protection and Control, 2019, 47(4): 115-123
Authors:ZHOU Tianpei and SUN Wei
Affiliation:School of Mechatronic Engineering, Xuzhou College of Industrial and Technology, Xuzhou 221140, China;School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221008, China and School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221008, China
Abstract:The utilization of every charging station varies greatly because the Electric Vehicle (EV) owners have great randomicity for choosing charging station, which causes the load imbalance of the whole power grid and affects the stability and security of the power grid. In view of the problem, minimum driving distance, minimum time and minimum deviation of time utilization rate and power utilization rate for charging station as optimization objectives, multi-objective optimal scheduling model of EVs for charging route is built. An improved Particle Swarm Optimization Algorithm based on Bacterial Chemotaxis (PSOBC) is proposed in order to solve the model. The simulation results show that the EV owners can purposefully choose charging stations according to the utilization of the charging stations in the area after adopting the proposed algorithm, which realizes the purpose of utilization equalization for charging stations. This work is supported by Industry-Academy-Research Cooperation Project of Jiangsu Province (No. BY2016026-01) and Natural Science Research Project in Universities of Jiangsu Province (No. 16KJB480006).
Keywords:electric vehicle (EV)   charging route   multi-objective optimization   utilization efficiency of charging device   particle swarm optimization based on bacterial chemotaxis (PSOBC)
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号