首页 | 本学科首页   官方微博 | 高级检索  
     


Role of lysine 39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5'-phosphate. Chemical rescue studies of Lys39 --> Ala mutant
Authors:A Watanabe  Y Kurokawa  T Yoshimura  T Kurihara  K Soda  N Esaki  A Watababe
Affiliation:Laboratory of Biofunctional Molecules, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
Abstract:The lysine residue binding with the cofactor pyridoxal 5'-phosphate (PLP) plays an important role in catalysis, such as in the transaldimination and abstraction of alpha-hydrogen from a substrate amino acid in PLP-dependent enzymes. We studied the role of Lys39 of alanine racemase (EC 5.1.1.1) from Bacillus stearothermophilus, the PLP-binding residue of the enzyme, by replacing it site-specifically with alanine and characterizing the resultant K39A mutant enzyme. The mutant enzyme turned out to be inherently inactive, but gained an activity as high as about 0.1% of that of the wild-type enzyme upon addition of 0.2 M methylamine. The amine-assisted activity of the mutant enzyme depended on the pKa values and molecular volumes of the alkylamines used. A strong kinetic isotope effect was observed when alpha-deuterated D-alanine was used as a substrate in the methylamine-assisted reaction, but little effect was observed using its antipode. In marked contrast, only L-enantiomer of alanine showed a solvent isotope effect in deuterium oxide in the methylamine-assisted reaction. These results suggest that methylamine serves as a base not only to abstract the alpha-hydrogen from D-alanine but also to transfer a proton from water to the alpha-position of the deprotonated (achiral) intermediate to form D-alanine. Therefore, the exogenous amine can be regarded as a functional group fully representing Lys39 of the wild-type enzyme. Lys39 of the wild-type enzyme probably acts as the base catalyst specific to the D-enantiomer of alanine. Another residue specific to the L-enantiomer in the wild-type enzyme is kept intact in the K39A mutant.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号