首页 | 本学科首页   官方微博 | 高级检索  
     

模糊聚类算法的研究与实现
作者单位:江西省商务学校计算机教学科
摘    要:聚类就是按照事物间的相似性进行区分和分类的过程,传统的聚类分析是一种硬划分,它把每个待辨识的对象严格地划分到某个类中,具有非此即彼的性质,因此这种分类的类别界限是分明的。而实际上大多数对象并没有严格的属性,它们在形态和类属方面存在着中介性,适合进行软划分。1965年,模糊理论的创始人Zadeh提出的模糊集理论为这种软划分提供了有力的分析工具,人们开始用模糊的方法来处理聚类问题,并称之为模糊聚类。该文主要内容是研究和实现基于等价关系的模糊聚类算法,该算法以隶属度作为聚类的出发点,以模糊等价矩阵作为启发规则。首先根据给出的样本,通过数据标准化求得数据矩阵;其次根据数量积法对数据矩阵进行标定即建立模糊相似矩阵;再次通过传递闭包法把模糊相似矩阵转换成模糊等价矩阵,在模糊等价矩阵中取不同的元素作为阈值λ,再根据λ截矩阵的定义把模糊等价矩阵转换成只有0和1的矩阵;最后,把该矩阵中元素相同的列聚为同一类。通过实例分析运用基于等价关系的模糊聚类算法进行聚类结果是正确的。

关 键 词:模糊集  模糊聚类  模糊等价矩阵  传递闭包

The Research and Realization of Fuzzy Clustering Algorithm
LU Qiu-gen. The Research and Realization of Fuzzy Clustering Algorithm[J]. Digital Community & Smart Home, 2008, 0(27)
Authors:LU Qiu-gen
Abstract:
Keywords:fuzzy set  fuzzy clustering  fuzzy equivalent matrix  transitive closure
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号