基于改进YOLOv5的桥梁裂缝模型研究 |
| |
作者姓名: | 郭佳佳 董增寿 常春波 |
| |
作者单位: | 太原科技大学,太原科技大学, |
| |
基金项目: | 山西省基础研究计划(自由探索类)面上项目(202303021211205)。 |
| |
摘 要: | 桥梁裂缝人工检测耗时费力、安全性不高,为了高效、准确、无接触地对桥梁裂缝进行识别检测,提出一种基于改进YOLOv5的桥梁裂缝检测模型YOLOv5-SA;该方法在YOLOv5s模型的基础上,首先对收集的数据集利用几何变换、光学变换等操作进行数据增强;其次将融合视觉注意力机制(SKNet)添加到Head部分来提高模型对裂缝特征的表示能力;最后在金字塔特征表示法(FPN)的基础上利用自适应空间特征融合(ASFF)模块加强网络特征融合能力,增加对桥梁裂缝小目标的检测;结果表明:改进后的模型相对于YOLOv5s模型能更好地抑制非关键信息,减少背景中的无效信息干扰,提高桥梁裂缝目标检测精准度;改进后的YOLOv5-SA模型准确率达到88.1%,与原YOLOv5s模型相比提高了1.6%;平均精度均值mAP 0.5和mAP 0.5~0.95分别达到90.0%、62.1%,相比而言分别提高了2.2%、2.4%;与其他桥梁裂缝检测相关方法(Faster-RCNN、YOLOv4tiny)相比,提出的YOLOv5-SA模型也具有相当或更好的检测性能;由此可见改进后的模型能更高效地检测复杂环境下的桥梁裂缝,可以...
|
关 键 词: | 桥梁裂缝 目标检测 注意力机制 YOLOv5 特征融合 图像处理 |
收稿时间: | 2023-02-03 |
修稿时间: | 2023-03-10 |
|
| 点击此处可从《计算机测量与控制》浏览原始摘要信息 |
|
点击此处可从《计算机测量与控制》下载全文 |
|