首页 | 本学科首页   官方微博 | 高级检索  
     


Thin film hydrodynamic lubrication of flying heads in magnetic disk storages
Authors:Yasunaga Mitsuya
Affiliation:

Department of Mechanical Engineering, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Abstract:Typical hydrodynamic lubrication problems commonly encountered in the ultrathin spacing between a computer flying head and a magnetic disk are reviewed. In magnetic disk storages, minimizing the spacing between the head and disk is essential to promote the largest possible increase in magnetic bit density. In the small (nearly 1.0 μm) spacing that has recently been attained, the rarefaction effects owing to the molecular mean free path become dominant. Specifically, in this paper the three governing equations resulting from the first- and second-order slip-flow models and from the linearized Boltzmann equation are compared. Next, some numerical approaches to eliminating the instability in pressure distribution in the high bearing number region are described. Surface roughness effects are also a principal concern in thin spacing. A mixed lubrication model which enables the analysis of the start/stop operation and the average film thickness theory for one- and two-dimensional roughnesses is summarized. Finally, from the viewpoint of practical head design, the slider dynamic characteristics and related slider design factors are discussed.
Keywords:hydrodynamic lubrication   computer data storage disks   flying heads   thin films   magnetic disks
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号