首页 | 本学科首页   官方微博 | 高级检索  
     


Spatially adaptive techniques for level set methods and incompressible flow
Authors:Frank Losasso  Ronald Fedkiw  Stanley Osher  
Affiliation:

aComputer Science Department, Stanford University, Stanford, CA 94305, United States

bDepartment of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, United States

Abstract:Since the seminal work of Sussman, M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 1994;114:146–59] on coupling the level set method of Osher S, Sethian J. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 1988;79:12–49] to the equations for two-phase incompressible flow, there has been a great deal of interest in this area. That work demonstrated the most powerful aspects of the level set method, i.e. automatic handling of topological changes such as merging and pinching, as well as robust geometric information such as normals and curvature. Interestingly, this work also demonstrated the largest weakness of the level set method, i.e. mass or information loss characteristic of most Eulerian capturing techniques. In fact, Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 1994;114:146–59] introduced a partial differential equation for battling this weakness, without which their work would not have been possible. In this paper, we discuss both historical and most recent works focused on improving the computational accuracy of the level set method focusing in part on applications related to incompressible flow due to both of its popularity and stringent accuracy requirements. Thus, we discuss higher order accurate numerical methods such as Hamilton–Jacobi WENO Jiang G-S, Peng D. Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J Sci Comput 2000;21:2126–43], methods for maintaining a signed distance function, hybrid methods such as the particle level set method Enright D, Fedkiw R, Ferziger J, Mitchell I. A hybrid particle level set method for improved interface capturing. J Comput Phys 2002;183:83–116] and the coupled level set volume of fluid method Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. J Comput Phys 2000;162:301–37], and adaptive gridding techniques such as the octree approach to free surface flows proposed in Losasso F, Gibou F, Fedkiw R. Simulating water and smoke with an octree data structure, ACM Trans Graph (SIGGRAPH Proc) 2004;23:457–62].
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号