首页 | 本学科首页   官方微博 | 高级检索  
     

模式识别在电解铝生产过程故障诊断中的应用
引用本文:刘国敏,高文,樊联,张传标. 模式识别在电解铝生产过程故障诊断中的应用[J]. 冶金动力, 2013, 0(11): 1-4
作者姓名:刘国敏  高文  樊联  张传标
作者单位:1. 南京南瑞集团公司,江苏南京,210003
2. 国电南瑞科技股份有限公司,江苏南京,210061
摘    要:为了提高电解铝生产过程的安全性和可靠性,将模糊理论和神经网络的模式识别方法应用到电解铝生产过程故障诊断中,使用模糊隶属度函数计算并归一化系统状态数据,获得数据隶属异常态的值,再将计算后的值输人至神经网络进行故障诊断,实现电解铝生产的故障诊断与报警,以提高生产过程的智能化水平。最后通过仿真实验,验证了上述诊断方法的有效性和准确性。

关 键 词:电解铝  模式识别  模糊隶属度函数  神经网络

Application of Pattern Recognition in Fault Diagnosis of Electrolytic Aluminum Production Process
LIU Guomin , GAO Wen , FAN Lian , ZHANG Chuanbiao. Application of Pattern Recognition in Fault Diagnosis of Electrolytic Aluminum Production Process[J]. Metallurgical Power, 2013, 0(11): 1-4
Authors:LIU Guomin    GAO Wen    FAN Lian    ZHANG Chuanbiao
Affiliation:1. NARI Group Corporation. Nanjing, Jiangsu 210003, China;2. NARI Technology Development Co., Ltd., Nanjing, Jiangsu 210061, China)
Abstract:In order to improve the safety and reliability of electrolytic aluminum pro- duction process, pattern recognition method of fuzzy theory and neural network was applied in fault diagnosis of electrolytic aluminum production. Data on system state were calculated and normalized using fuzzy membership functions to obtain abnormal state values, and then the calculated values were put into a neural network fault diagnosis to realize fault diagnosis and alarming during production, which improved the intelligent level of production process. At last, the validity and accuracy of the diagnosis methods were verified by simulation experiment.
Keywords:electrolytic aluminum  pattern recognition  fuzzy membership functions  neu-ral network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号