首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的交通流量预测算法
引用本文:朱文兴,龙艳萍,贾磊. 基于RBF神经网络的交通流量预测算法[J]. 山东大学学报(工学版), 2007, 37(4): 23-27
作者姓名:朱文兴  龙艳萍  贾磊
作者单位:山东大学,控制科学与工程学院,山东,济南,250061;山东大学,控制科学与工程学院,山东,济南,250061;济南工程职业技术学院,山东,济南,250200
基金项目:国家自然科学基金;山东省自然科学基金
摘    要:传统的径向基函数神经网络构造算法大多是根据先验知识和以往的经验事先确定网络的隐层结构,采用传统聚类和最小二乘法训练网络的各项参数,这种算法一般是基于局部搜索机制,使得训练的参数往往陷入局部极小值.提出用遗传算法结合一种新的聚类方法即最疏集(MSS-most scattered set)均值聚类算法和传统的最小二乘法来训练RBF(radial basis function)网络结构参数的方法.该方法不仅避免了网络训练陷入局部极小的问题,而且新的聚类方法的计算效率有所提高.通过把该算法应用在交通流预测方面,取得了令人满意的效果.

关 键 词:RBF神经网络  遗传算法  最疏集均值聚类
文章编号:1672-3961(2007)04-0023-05
收稿时间:2007-04-25
修稿时间:2007-04-25

Traffic volume forecasting algorithm based on RBF neural network
ZHU Wen-xing,LONG Yan-ping,JIA Lei. Traffic volume forecasting algorithm based on RBF neural network[J]. Journal of Shandong University of Technology, 2007, 37(4): 23-27
Authors:ZHU Wen-xing  LONG Yan-ping  JIA Lei
Affiliation:1. School of Control Science and Engineering,Shandong University,Jinan 250061,China;2. Jinan Engineering Vocation College
Abstract:Traditional training algorithms for radial basis function(RBF) neural networks usually start with a predetermined hidden layer structure,which is selected by using a priori knowledge and based on previous experience.The parameters of RBF networks are trained by using traditional clustering and the least squares method.These training algorithms are always based on the local search method and often suffer from being trapped at structural local minima.A new method for training RBF structural parameters by using a genetic algorithm is put forward,of which a new clustering method named the sorting MSS(most scattered set) clustering method and a traditional least square method are incorporated.This method can not only prevent the result of the network from being trapped at local minima but also highly improves the computational efficiency.It gives satisfactory results when this algorithm is applied to traffic flow forecasting.
Keywords:RBF neural networks  GA  MSS means clustering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号