首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of capillary force and surface deformation on particle removal in turbulent flows
Abstract:A new rolling detachment model for particle removal in the presence of capillary forces based on the maximum adhesion resistance was developed. The new model uses an effective thermodynamic work of adhesion model that includes the effects of capillary forces generated by the formation of liquid meniscus at the interface. The JKR and DMT models for elastic particle and surface deformations and the Maugis and Pollock model for the plastic deformation were extended to include the effect of capillary forces. Under turbulent flow conditions, the criteria for incipient rolling detachments were evaluated. The turbulence burst model was used to evaluate the air velocity near the substrate. The critical shear velocities for resuspension of particles of different sizes were evaluated and the results were compared with those without capillary force. The model predictions were compared with the available experimental data and good agreement was found.
Keywords:PARTICLE ADHESION  PARTICLE REMOVAL  CAPILLARY FORCE  SURFACE TENSION  RESUSPENSION  ELASTIC DEFORMATION  PLASTIC DEFORMATION
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号