首页 | 本学科首页   官方微博 | 高级检索  
     


Sensor planning for mobile robot localization using Bayesian network inference
Abstract:We propose a new method of sensor planning for mobile robot localization using Bayesian network inference. Since we can model causal relations between situations of the robot's behavior and sensing events as nodes of a Bayesian network, we can use the inference of the network for dealing with uncertainty in sensor planning and thus derive appropriate sensing actions. In this system we employ a multi-layered-behavior architecture for navigation and localization. This architecture effectively combines mapping of local sensor information and the inference via a Bayesian network for sensor planning. The mobile robot recognizes the local sensor patterns for localization and navigation using a learned regression function. Since the environment may change during the navigation and the sensor capability has limitations in the real world, the mobile robot actively gathers sensor information to construct and reconstruct a Bayesian network, and then derives an appropriate sensing action which maximizes a utility function based on inference of the reconstructed network. The utility function takes into account belief of the localization and the sensing cost. We have conducted some simulation and real robot experiments to validate the sensor planning system.
Keywords:Sensor planning  mobile robot  localization  bayesian network inference  uncertainty  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号