首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical Design of a Trunk with Redundant and Viscoelastic Joints for Rhythmic Quadruped Locomotion
Abstract:Passive mechanisms, such as free joints and viscoelastic components, enable natural oscillation of the robot body, which allows rhythmic locomotion with low energy and computational costs. In particular, joint viscoelasticity can be a powerful candidate for changing natural oscillation and so influence the operation performance of locomotion. The present study considers the passive mechanism of a trunk, and investigates the contributions of a trunk mechanism with redundant joints and tunable viscoelasticity to quadruped locomotion. A physical quadruped robot with a trunk mechanism is developed, and the walking performance of this robot for various gait patterns and joint viscoelasticities is investigated. A simulation model is also constructed based on the physical robot, and the contribution of the viscoelasticity to trunk oscillation and the appropriate joint viscoelasticity and number of trunk joints are discussed. Experimental results obtained using the physical robot indicate that the proposed trunk mechanism contributes to successful locomotion as compared to a robot with a rigid trunk and that the velocity is influenced by not only the gait pattern, but also the joint viscoelasticity (i.e., there are appropriate couplings of the joint viscoelasticity and gait pattern). The simulation results indicate that the trunk mechanism requires joint viscoelasticity in order to achieve oscillation and that a greater number of joints having a smaller joint viscoelasticity enables higher velocity. These results suggest that, in addition to the leg mechanism and the controller design, the design of the trunk mechanism is also important.
Keywords:QUADRUPED ROBOT  TRUNK MECHANISM  REDUNDANT JOINT  VISCOELASTIC JOINT  RHYTHMIC LOCOMOTION
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号