首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Halloysite Nanotube Incorporation in Epoxy Resin and Carbon Fiber Ethylene/Ammonia Plasma Treatment on Their Interfacial Property
Abstract:Abstract

Effects of halloysite nanotube (HNT) loading of up to 2% in epoxy resin on its mechanical properties were characterized. The interfacial property of the resin with carbon fiber nanocomposite was also studied. Single fiber composite (SFC) technique was used to characterize the carbon fiber/epoxy resin interfacial shear stress. Carbon fibers were also coated with ammonia/ethylene plasma polymer to obtain a thin coating of the polymer with amine groups that could react with the epoxy and thus improve the interfacial property. The results indicated that the Young’s modulus of HNT containing nanocomposites increased slightly up to a loading of 0.25% after which it started to decrease. The tensile strength, however, steadily decreased with increasing of HNT loading although the fracture strain did not change significantly. This might be related to the nanotube shape, size and clustering. The interfacial shear strength (IFSS) was also increased slightly with HNT loading. The ethylene/ammonia plasma polymer coated fibers exhibited significantly higher IFSS by over 150%, independent of the HNT loading. The highest IFSS obtained was almost 79 MPa for plasma treated fibers. The results suggest that the carbon fiber/epoxy interface is not affected by the incorporation of up to 1.5% of HNT. Furthermore, the fiber surface modification through plasma polymerization is an effective method to improve and control the IFSS.
Keywords:Halloysite nanotubes  single fiber composites  plasma treatment  fiber/resin interface  nanocomposites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号