首页 | 本学科首页   官方微博 | 高级检索  
     


A new water-based chemical treatment based on sodium dichloroisocyanurate (DCI) for rubber soles in the footwear industry
Abstract:A new water-based chemical treatment based on sodium dichloroisocyanurate (DCI) solutions for rubber soles of different natures is reported in this study. Different concentrations (1-5 wt%) of DCI and two rubber formulations (vulcanized styrene-butadiene rubber, R2; thermoplastic rubber, TR) were considered. The effects produced by treatment of the rubber soles with DCI were compared with the standard halogenation method using trichloroisocyanuric acid (TCI) solutions in an organic solvent (ethyl acetate). The effects of chlorination on the rubber surfaces were studied using contact angle measurements, ATR-IR spectroscopy, and scanning electron microscopy. The adhesion strength was obtained from T-peel strength tests on canvas/PUD adhesive/treated rubber joints. The adhesive used throughout this study was a water-based polyurethane dispersion (PUD). The surface treatment with aqueous DCI solutions modified the surface chemistry of both the TR and R2 rubbers, creating C—Cl moieties on the surface and removing the zinc stearate from the R2 rubber surface. The use of a low DCI concentration in water was less effective in modifying the TR rubber, but was sufficient to obtain good T-peel strength values for the R2 rubber joints. On the other hand, heterogeneities and cracks were created on the rubber surface (mainly on the R2 rubber surface), which may contribute to an increase in the mechanical interlocking with the adhesive. A noticeable increase in the T-peel strength and a cohesive failure in the rubber for the joints produced with TR rubber were obtained when the rubber was treated with aqueous DCI solutions. For the canvas/PUD adhesive/chlorinated R2 rubber joint, the failure was located in a thin surface layer on the canvas. Finally, the surface treatment with TCI in ethyl acetate produced a more significant surface modification on both the TR and the R2 rubber, creating deeper roughness on the R2 rubber surface. Consequently, higher peel strength values were obtained using TCI solutions in ethyl acetate. Furthermore, the T-peel strength values were high in all joints produced with TR rubber treated with either TCI solution in ethyl acetate or aqueous DCI solution.
Keywords:STYRENE-BUTADIENE RUBBER  VULCANIZED RUBBER  THERMOPLASTIC RUBBER  HALOGENATION  WATERBASED SURFACE TREATMENT  SODIUM DICHLOROISOCYANURATE  CONTACT ANGLE  ATR-IR SPECTROSCOPY  SEM  T-PEEL STRENGTH
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号