首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征裁剪的双阈值Adaboost人脸检测算法
引用本文:沈科磊,;杨正理,;欧阳广帅. 基于特征裁剪的双阈值Adaboost人脸检测算法[J]. 计算机与现代化, 2014, 0(8): 50-53. DOI: 10.3969/j.issn.1006-2475.2014.08.011
作者姓名:沈科磊,  杨正理,  欧阳广帅
作者单位:[1]河海大学计算机与信息学院,江苏南京211100; [2]三江学院电气与自动化工程学院,江苏南京210012
摘    要:针对传统Adaboost算法存在训练耗时长的问题,提出一种基于特征裁剪的双阈值Adaboost算法人脸检测算法。一方面,使用双阈值的弱分类器代替传统的单阈值弱分类器,提升单个弱分类器的分类能力;另一方面,特征裁剪的Adaboost算法在每轮训练中仅仅利用错误率较小的特征进行训练。实验表明基于特征裁剪的双阈值Adaboost人脸检测算法通过使用较少的特征和减少训练时的特征数量的方式,提高了算法的训练速度。

关 键 词:人脸检测  Adaboost  特征裁剪  双阈值

Dual-threshold Adaboost Face Detection Algorithm Based on Feature Pruning
SHEN Ke-lei,YANG Zheng-li,OUYANG Guang-shuai. Dual-threshold Adaboost Face Detection Algorithm Based on Feature Pruning[J]. Computer and Modernization, 2014, 0(8): 50-53. DOI: 10.3969/j.issn.1006-2475.2014.08.011
Authors:SHEN Ke-lei  YANG Zheng-li  OUYANG Guang-shuai
Affiliation:SHEN Ke-lei , YANG Zheng-li, OUYANG Guang-shuai (1. College of Computer and Information, Hohai University, Nanjing 211100, China ; 2. College of Electrical Engineering and Automation, Sanjiang University, Nanjing 210012, China)
Abstract:Aiming at the problem of too much training time by using traditional Adaboost,this paper proposes a novel dual-Adaboost face deteetion algorithm based feature pruning. On the one hand,the usage of dual-threshold weak classifiers which replaced the traditional single-threshold weak classifier improves the classification capability on individual weak classifier. On the other hand,the algorithm uses only the samples with small error rate to train the weak classifier. Experimental results show that the training speed is increased by using less features and a small proportion of the features in this dual-Adaboost algorithm.
Keywords:face detection  Adaboost  feature pruning  dual-threshold
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号