High-mobility strained-Si PMOSFET's |
| |
Authors: | Nayak D.K. Goto K. Yutani A. Murota J. Shiraki Y. |
| |
Affiliation: | Logic Technol. Div., Adv. Micro Devices Inc., Sunnyvale, CA; |
| |
Abstract: | Operation and fabrication of a new high channel mobility strained-Si PMOSFET are presented. The growth of high-quality strained Si layer on completely relaxed, step-graded, SiGe buffer layer is demonstrated by gas source MBE. The strained-Si layer is characterized by double crystal X-ray diffraction, photoluminescence, and transmission electron microscopy. The operation of a PMOSFET is shown by device simulation and experiment. The high-mobility strained-Si PMOSFET is fabricated on strained-Si, which is grown epitaxially on a completely relaxed step-graded Si0.82Ge0.18 buffer layer on Si(100) substrate. At high vertical fields (high |Vg|), the channel mobility of the strained-Si device is found to be 40% and 200% higher at 300 K and 77 K, respectively, compared to those of the bulk Si device. In the case of the strained-Si device, degradation of channel mobility due to Si/SiO2 interface scattering is found to be more pronounced compared to that of the bulk Si device. Carrier confinement at the type-II strained-Si/SiGe-buffer interface is clearly demonstrated from device transconductance and C-V measurements at 300 K and 77 K |
| |
Keywords: | |
|
|