首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical properties of solution-precursor plasma-sprayed thermal barrier coatings
Authors:Amol D. Jadhav
Affiliation:Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
Abstract:The microstructure of thermal barrier coatings (TBCs) of 7 wt.% Y2O3 stabilized ZrO2 (7YSZ) deposited using the solution-precursor plasma spray (SPPS) method has: (i) controlled porosity, (ii) vertical cracks, and (iii) lack of large-scale “splat” boundaries. An unusual feature of such SPPS TBCs is that they are well-adherent in ultra-thick forms (~ 4 mm thickness), where most other types of ultra-thick ceramic coatings fail spontaneously. Here a quantitative explanation is provided as to why as-deposited ultra-thick SPPS TBCs are so well-adherent. The mode II toughness of thin (0.2 mm) SPPS TBCs has been measured using the “barb” shear test, which is found to be 66 J m− 2. Residual stresses in SPPS TBCs of thickness 0.2, 1.5, and 4.0 mm have been estimated using a microstructure-based object-oriented finite element (OOF) method. These stresses are found to be low, as a result of the strain-tolerant microstructure of the SPPS TBCs. The corresponding strain energy release rates that drive mode II cracks in the three different thickness SPPS TBCs have been found to be less than the mode II toughness.
Keywords:Thermal barrier coatings   Toughness   Mechanical testing   Finite element analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号