首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process
Authors:Sheng-Min Yang  Dong-Yih Lin  Weite Wu
Affiliation:a Department of Materials Engineering, National Chung Hsing University, Taiwan (ROC)
b Institute of Materials and System Engineering, Mingdao University, Taiwan (ROC)
c Department of Materials Science and Engineering, I-Shou University, Taiwan (ROC)
Abstract:The monolayered TiSiN and multilayered TiSiN/CrN were synthesized by cathodic arc evaporation. The Ti/Si (80/20 at.%) and chromium targets were used as the cathodic materials. With the different I[TiSi]/I[Cr] cathode current ratios of 1.8, 1.0, and 0.55, the multilayered TiSiN/CrN coatings possessed different multilayer periods (Λ) of 8.3 nm, 6.2 nm, and 4.2 nm. From XRD and TEM analyses, both the monolayered TiSiN and multilayered TiSiN/CrN revealed a typical columnar structure and B1-NaCl crystalline, no peaks of crystalline Si3N4 were detected. Among the multilayered TiSiN/CrN coatings, the multilayered coating with Λ = 8.3 nm possessed higher hardness of 37 ± 2 GPa, higher elastic modulus of 396 ± 20 GPa and the lower residual stress of − 1.60 GPa than the monolayered (Ti0.39Si0.07)N0.54 coating(− 7.25 GPa). Due to the higher Cr/(Ti +Cr + Si) atomic ratio, the multilayered TiSiN/CrN with Λ = 5.5 nm possessed the lowest friction coefficient. But the lowest of wear rate was obtained by the multilayered TiSiN/CrN with Λ = 8.3 nm, because of higher H3/E?2 ratio of 0.323 GPa. The monolayered TiSiN possessed the highest wear rate of 2.87 μm2/min. Therefore, the mechanical and tribological property can be improved by the design of multilayered coating.
Keywords:Multilayer   Cathodic arc evaporation   TiSiN coating
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号