首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic response of top-down cracked asphalt concrete pavement under a half-sinusoidal impact load
Authors:Lu Sun  Yufen Duan
Affiliation:1. Department of Civil Engineering, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC, 20064, USA
2. School of Transportation, Southeast University, No. 2 Sipailou, Nanjing, 210096, China
Abstract:A 3D finite element analysis model of cracked asphalt pavement is established by the FEM software ABAQUS. Based on dynamics mechanics, fracture mechanics and finite element theory, this paper studies the influence of various vehicle speeds, crack location, crack depth, damping ratio etc. on the dynamic response. The results show that the surface deflection, the maximum tensile strain at the bottom of the asphalt layer, and the maximum shear stress of the asphalt layer decreased with the increase in vehicle velocity when there is no crack in the pavement. No matter where the transverse position of the crack is the stress intensity factors increase with the increase in crack depth and decrease exponentially with the increase in longitudinal distance between the vehicle center and the crack. In the case of the crack locating in the center of wheel clearance, the surface deflection increases with the crack depth increasing. But if the crack is at the edge of the wheel track, there will be a critical vehicle velocity where the surface deflection is smaller than the asphalt pavement without crack if the vehicle velocity is above it. The maximum tensile strain at the bottom of the asphalt layer and the maximum shear stress of the asphalt layer are also smaller than the asphalt pavement without crack. The maximum tensile strain and the maximum shear stress decrease with the damping ratio increasing. So the increase in damping ratio can help to alleviate the propagation of cracks.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号