首页 | 本学科首页   官方微博 | 高级检索  
     

软件缺陷集成预测模型研究
引用本文:刘小花,王 涛,吴振强. 软件缺陷集成预测模型研究[J]. 计算机应用研究, 2013, 30(6): 1734-1738
作者姓名:刘小花  王 涛  吴振强
作者单位:陕西师范大学 计算机科学学院,西安,710062
基金项目:国家自然科学基金面上项目(61173190); 陕西省自然科学基础研究计划项目(2009JM8002); 中央高校基本科研业务费专项资金资助项目(GK201302055)
摘    要:利用单一分类器构造的缺陷预测模型已经遇到了性能瓶颈, 而集成分类器相比单一分类器往往具有显著的性能优势。以构造高效的集成缺陷预测模型为出发点, 比较了七种不同类型集成分类器的算法和特点。在14个基准数据集上的实验显示, 部分集成预测模型的性能优于基于朴素贝叶斯的单一预测模型。其中, 基于投票的集成分类框架具有最优的预测性能以及统计学意义上的性能优势显著性, 随机森林算法次之。Stacking集成框架也具有较强的泛化能力。

关 键 词:软件缺陷预测  集成分类  投票  随机森林

Software defect prediction based on classifiers ensemble
LIU Xiao-hu,WANG Tao,WU Zhen-qiang. Software defect prediction based on classifiers ensemble[J]. Application Research of Computers, 2013, 30(6): 1734-1738
Authors:LIU Xiao-hu  WANG Tao  WU Zhen-qiang
Affiliation:School of Computer Science, Shaanxi Normal University, Xi'an 710062, China
Abstract:Software defect prediction using classification algorithms was advocated by many researchers. However, several new literatures show the performance bottleneck by applying a single classifier recent years. On the other hand, classifiers ensemble can effectively improve classification performance than a single classifier. This paper conducted a comparative study of various ensemble methods with perspective of taxonomy. A series of benchmarking experiments on public-domain datasets MDP show that applying classifiers ensemble methods to predict defect could achieve better performance than using a single classifier. Specially, in all seven ensemble methods evolved by this experiments, voting and random forest have obvious performance superiority than others, and Stacking also has better generalization ability.
Keywords:software defect prediction   classifiers ensemble   vote   random forest
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号