首页 | 本学科首页   官方微博 | 高级检索  
     


Acoustic Emission Sensor Calibration for Absolute Source Measurements
Authors:Gregory C McLaskey  Steven D Glaser
Affiliation:1. Department of Civil and Environmental Engineering, University of California, 621A Sutardja Dai Hall (CITRIS Building), Berkeley, CA, 94720-1758, USA
Abstract:This paper describes sensor calibration and signal analysis techniques applicable to the method of acoustic emission (AE) and ultrasonic testing. They are particularly useful for obtaining absolute measurements of AE wave amplitude and shape, which can be used to constrain the physics and mechanics of the AE source. We illustrate how to perform calibration tests on a thick plate and how to implement two different mechanical calibration sources: ball impact and glass capillary fracture. In this way, the instrument response function can be estimated from theory, without the need for a reference transducer. We demonstrate the methodology by comparing calibration results for four different piezoelectric acoustic emission sensors: Physical Acoustics (PAC) PAC R15, PAC NANO30, DigitalWave B1025, and the Glaser-type conical sensor. From the results of these tests, sensor aperture effects are quantified and the accuracy of calibration source models is verified. Finally, this paper describes how the effects of the sensor can be modeled using an autoregressive-moving average (ARMA) model, and how this technique can be used to effectively remove sensor-induced distortion so that a displacement time history can be retrieved from recorded signals.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号