首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al–Bi alloys
Authors:Adrina P Silva  Jos E Spinelli  Amauri Garcia
Affiliation:aDepartment of Materials Engineering, University of Campinas – UNICAMP, PO Box 6122, 13083-970 Campinas, SP, Brazil
Abstract:Upward directional unsteady-state solidification experiments were performed with both a hypomonotectic Al–2.0 wt% Bi alloy and a monotectic Al–3.2 wt% Bi alloy. Besides, the monotectic composition (3.2 wt% Bi) was directionally solidified under downward transient heat flow conditions, which enables the effects of melt convection on the final microstructure to be evaluated since the collective downward movement of Bi-rich particles is favored in such case. This is due to the density differences between the two coexisting liquid phases. The thermal parameters such as cooling rate, growth rate and thermal gradient were experimentally determined by data collected from cooling curves recorded along the casting length. The monotectic features observed in the Al–3.2 wt% Bi alloy castings, i.e. the interphase spacing and Bi-rich particles diameter were correlated with the growth rate and thermal gradient. The cell spacing was experimentally determined for the Al–2.0 wt% Bi alloy as a function of both the cooling rate and tip growth rate. These experimental data were compared with the main predictive cellular growth models from the literature. A comparison between upward and downward unsteady-state solidification results for the interphase spacing and Bi-rich particles diameter has also been conducted.
Keywords:Metals and alloys  Microstructure  Thermal analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号