首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals
Authors:Simonetta Tunesi  Valeria Poggi  Carlo Gessa
Affiliation:(1) U.C.I. ldquoScienze e Tecnologie Agroindustriali e Agroalimentarirdquo, Istituto di Chimica Agraria, Università degli Studi di Bologna, Viale Berti Pichat 10, 40127 Bologna, Italy
Abstract:P-removal from soil solution is mainly due to adsorption and precipitation reactions. For calcareous soils two pathways have been proposed as being relevant: partitioning on soil surfaces and precipitation induced by Ca2+ ions in solution. To define P-speciation in soil and reduce P-immobilisation following fertilisation, the relative importance of these two reactions needs to be quantitatively established. This investigation, conducted on two calcareous soils, suggests that Ca-ion activity in the liquid phase is mainly responsible for the formation of insoluble Ca-P phases. Our study was carried out by determining: a) batch sorption isotherms at different slurry concentrations, times of contact, pH and indifferent electrolyte concentrations; b) supernatant isotherms on soil suspensions; c) insolubilisation kinetics of P added to soil columns. The shape of the sorption isotherms indicated that adsorption predominated at low concentrations (below approximately 0.5 mM); above this level precipitation became predominant. Precipitation from solution was demonstrated by adding increasing amounts of phosphate to soil suspension supernatants and precipitation levels comparable to those observed in sorption isotherms were obtained. Thus, carbonate mineral surfaces were not necessary for the induction of P precipitation. The formation of Ca-P mineral phases was increased with reaction time and was governed by the concentration of Ca-ions, pH and indifferent electrolyte concentration. P added at the top of soil columns was rapidly insolubilised: after 5 weeks the P-Olsen value was reduced to about 60% and P was not transported to the deepest layers but remained in the surface ones. These results suggest that, for soils with a high reservoir of exchangeable cations able to form insoluble P phases, precipitation is the predominant mechanism which reduces P availability for plants.
Keywords:calcium ions  carbonates  P adsorption  P precipitation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号