首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of bead milling on heat generation ability in AC magnetic field of FeFe2O4 powder
Authors:Hiromichi Aono  Yusuke Watanabe  Takashi Naohara  Tsunehiro Maehara  Hideyuki Hirazawa  Yuji Watanabe
Affiliation:1. Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan;2. Department of Environmental Materials Engineering, Niihama National College of Technology, Niihama 792-8580, Japan;3. Department of Surgery, Graduate school of Medicine, Ehime University, Toon 791-0295, Japan
Abstract:Nano-sized FeFe2O4 ferrite powder having a heat generation ability in an AC magnetic field was prepared by bead milling for a thermal coagulation therapy application. A commercial powder sample (non-milled sample) of ca. 2.0 μm in particle size showed a temperature enhancement (ΔT) of 3 °C in an AC magnetic field (powder weight 1.0 g, 370 kHz, 1.77 kA m−1) in ambient air. The heat generation ability in the AC magnetic field improved with the milling time, i.e., due to a decrease in the average crystallite size for all the examined ferrites. The highest heat ability (ΔT = 26 °C) in the AC magnetic field in ambient air was for the fine FeFe2O4 powder with a 4.7 nm crystallite size (the samples were milled for 6 h using 0.1 mm? beads). However, the heat generation ability decreased for the excessively milled FeFe2O4 samples having average crystallite sizes of less than ca. 4.0 nm. The heat generation of the samples showed some dependence on the hysteresis loss for the BH magnetic property. The reasons for the high heat generation properties of the milled samples would be ascribed to an increase in the Néel relaxation of the superparamagnetic material. The hysteresis loss in the BH magnetic curve would be generated as the magnetic moment rotates (Néel relaxation) within the crystal. The heat generation ability (W g−1) can be estimated using a 1.07 × 10−4fH2 frequency (f, kHz) and the magnetic field (H, kA m−1) for the samples milled for 6 h using 0.1 mm? beads. Moreover, an improvement in the heating ability was obtained by calcination of the bead-milled sample at low temperature. The maximum heat generation (ΔT = 59 °C) ability in the AC magnetic field in ambient air was obtained at ca. 5.6 nm for the sample calcined at 500 °C. The heat generation ability (W g−1) for this heat treated sample was 2.54 × 10−4fH2.
Keywords:Magnetic materials  Nanostructures  Oxides  Magnetic properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号