首页 | 本学科首页   官方微博 | 高级检索  
     


State‐of‐the‐art review on the local strain energy density concept and its relation to the J‐integral and peak stress method
Authors:D Radaj
Affiliation:Department of Mechanical Engineering, Technical University at Braunschweig, Braunschweig, Germany
Abstract:The local average strain energy density (SED) approach has been proposed and elaborated by Lazzarin for strength assessments in respect of brittle fracture and high‐cycle fatigue. Pointed and rounded (blunt) V‐notches subjected to tensile loading (mode 1) are primarily considered. The method is systematically extended to multiaxial conditions (mode 3, mixed modes 1 and 2). The application to brittle fracture is documented for PMMA flat bar specimens with pointed or rounded V‐notches inclusive of U‐notches. Results for other brittle materials (ceramics, PVC, duraluminum and graphite) are also recorded. The application to high‐cycle fatigue comprises fillet‐welded joints, weld‐like shaped and V‐notched base material specimens as well as round bar specimens with a V‐notch. The relation of the local SED concept to comparable other concepts is investigated, among them the Kitagawa, Taylor and Atzori–Lazzarin diagrams, the Neuber concept of fictitious notch rounding applied to welded joints and also the J‐integral approach. Alternative details of the local SED concept such as a semicircular control volume, microrounded notches and slit‐parallel loading are also mentioned. Coarse FE meshes at pointed or rounded notch tips are proven to be acceptable for accurate local SED evaluations. The peak stress method proposed by Meneghetti, which is based on a notch stress intensity factor consideration combined with a globally even coarse FE mesh and is used for the assessment of the fatigue strength of welded joints, is also presented.
Keywords:brittle fracture  fatigue assessment  J‐integral  peak stress  strain energy density  welded joint
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号