首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应蚁群算法的车辆路径问题研究
引用本文:刘志硕,申金升,柴跃廷. 基于自适应蚁群算法的车辆路径问题研究[J]. 控制与决策, 2005, 20(5): 562-566
作者姓名:刘志硕  申金升  柴跃廷
作者单位:清华大学,自动化系,北京,100084;北京交通大学,系统工程研究所,北京,100044
基金项目:国家"十五"科技攻关项目(2001BA205A08-04).
摘    要:车辆路径问题(VRP)是物流研究领域中一个具有重要理论和现实意义的问题.蚁群算法是一种新型的模拟进化算法,可以很好地解决旅行商问题(TSP).在分析VRP与TSP区别的基础上,构造了求解VRP的自适应蚁群算法.指出可行解问题是蚁群算法的关键问题,并重点对该问题进行了研究,提出了近似解可行化等解决策略.实验结果表明,自适应蚁群算法性能优良,能够有效地求解VRP问题.

关 键 词:车辆路径问题  旅行商问题  自适应蚁群算法  近似解可行化  吸引力
文章编号:1001-0920(2005)05-0562-05
修稿时间:2004-06-24

Vehicle routing problem based on an adaptive ant colony algorithm
LIU Zhi-shuo,SHEN Jin-sheng,CHAI Yue-ting. Vehicle routing problem based on an adaptive ant colony algorithm[J]. Control and Decision, 2005, 20(5): 562-566
Authors:LIU Zhi-shuo  SHEN Jin-sheng  CHAI Yue-ting
Affiliation:LIU Zhi-shuo~1,SHEN Jin-sheng~2,CHAI Yue-ting~1
Abstract:On the basis of analyzing the differences between vehicle routing problem(VRP) and traveling salesman problem(TSP), an adaptive ant colony algorithm(AACA) is proposed to solve VRP, which is improved from basic ACA by means of integrating C-W algorithm and introducing the adaptive ant attraction of arc in order to decrease computing time and avoid stagnation behavior. Moreover, how to acquire feasible solution is a key problem in this algorithm, and three relative resolutions such as the feasibility process of approximate solution arc presented. The computational experiments show that the AACA is feasible and valid for VRP.
Keywords:vehicle routing problem  traveling salesman problem  adaptive ant colony algorithm  feasibility process of approximate solution  ant attraction of arc
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号